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Introduction

Model

X : the data space.

Y : the label space, {1, · · · , c}.
Pi = p(X |Y = i), conditional distribution.

P1, · · · ,Pc : A list of c distributions, one for each class.
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Label Shift

A ”source” distribution.

P =
c∑

i=1

βiPi

Training set.

{(xj , yj)}j∈[n] ∈ (X × Y)n

P̂i :=
1

ni

∑
j∈[n]:yj=i

δxj (·)

A ”target” distribution.

Q =
c∑

i=1

α∗
i Pi

Testing set.

{xn+j}j∈[m] ∈ Xm

Q̂ :=
1

m

m∑
j=1

δxn+j (·)

−→ The distributions differ only on the marginal Y .

Label Shift Quantification 3/23



Contaminated Label Shift

A ”source” distribution.

P =
c∑

i=1

βiPi

Training set.

{(xj , yj)}j∈[n] ∈ (X × Y)n

P̂i :=
1

ni

∑
j∈[n]:yj=i

δxj (·)

A ”target” distribution.

Q =
c∑

i=1

α∗
i Pi + α∗

0Q0

Testing set.

{xn+j}j∈[m] ∈ Xm

Q̂ :=
1

m

m∑
j=1

δxn+j (·)

−→ Q0 is unknown.
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Learning to Quantify

Goal: Quantification

Using {(xj , yj)}j∈[n] ∈ (X × Y)n and {xn+j}j∈[m] ∈ Xm, estimate α∗.

González, Castaño, Chawla, and Coz ”A review on quantification learning”. In
ACM Computing Surveys, 2017.

Esuli, Fabris, Moreo and Sebastiani ”Learning to Quantify”. In Springer Nature,
2023
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Learning to Quantify

Classify and Count (CC)

Use a classifier f̂ .
→ Count the number of times your classifier outputs each class.

α̂cc =

 1

m

m∑
j=1

1f̂ (xn+j )=i


i

= Q̂(f̂ (x) = i)

Problem

αcc = Q(f̂ (x) = i) ̸= Q(y = i) = α∗
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Adjusted Classify and Count

Confusion matrix

αcc = Mf̂ × α∗

where Mf is the confusion matrix of f̂ .

Black-Box Shift Estimation (BBSE)

α̂ = M̂−1

f̂
α̂cc

Lipton, Wang, and Smola. ”Detecting and correcting for label shift with black box
predictor”. In ICML, 2018.
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Learning to Quantify

Label Shift (LS)

Q =
c∑

i=1

α∗
i Pi

Distribution Matching

Using a Pseudo-Distance D:

α̂ = argmin
α∈∆c

D

(
c∑

i=1

αi P̂i , Q̂

)

Where ∆c := {x ∈ Rc
+ :
∑

xi = 1}.
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Embedding

→ Let ϕ : X → F be a fixed feature mapping from X into a Hilbert space F
(possibly F = RD).

Embedding

ϕ(P) := EX∼P[ϕ(X )] ∈ F

−→ ϕ is chosen so that ϕ(P) characterizes the distribution P.

Pseudo-Distance

Dϕ(P,Q) = ∥ϕ(P)− ϕ(Q)∥F

Label Shift Quantification 9/23



Distribution Feature Matching

Label Shift (LS)

Q =
c∑

i=1

α∗
i Pi

Distribution Feature Matching (DFM)

α̂ = argmin
α∈∆c

∥∥∥∥∥
c∑

i=1

αiϕ(P̂i )− ϕ(Q̂)

∥∥∥∥∥
F

(P)

where ∆c := {x ∈ Rc
+ :
∑

xi = 1}
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Examples

Examples

ϕ(x) = (1{f̂ (x) = i})i=1,...,c ∈ Rc . For f̂ a hard-classifer.

ϕ(x) = f̂ (x) ∈ Rc . For f̂ a soft-classifer.

ϕ(x) of a neural network : f̂ (x) = wTϕ(x) + b ∈ Rc

ϕ(x) = (y 7→ k(x , y)) ∈ Hk

Lipton, Wang, and Smola. ”Detecting and correcting for label shift with black box
predictor”. In ICML, 2018.

Iyer, Nath, and Sarawagi. ”Maximum mean discrepancy for class ratio estimation:
Convergence bounds and kernel selection”. In ICML, 2014.

Kawakubo, Christoffel du Plessis and Sugiyama. ”Computationally efficient
class-prior estimation under class balance change using energy distance”. In IEICE
Transactions on Information and Systems, 2016.

Label Shift Quantification 11/23



Theoretical Analysis

Assumptions
c∑

i=1

βiϕ(Pi ) = 0 ⇐⇒ β = 0 (A1)

and
∃C > 0 : ∥ϕ(x)∥F ≤ C for all x . (A2)
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Theoretical Analysis

Definition

Ĝij = ⟨ϕ(P̂i ), ϕ(P̂j)⟩
M̂ij = ⟨ϕ(P̂i )− ϕ, ϕ(P̂j)− ϕ⟩

with ϕ = c−1
∑c

k=1 ϕ(P̂k).

λmin is the smallest eigenvalue of Ĝ .
∆min is the second smallest eivenvalue of M̂ .
In particular, it holds:

∆min ≥ λmin.
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Main Theorem under LS
Theorem

For any δ ∈ (0, 1), with probability greater than 1− δ:

∥α̂− α∗∥2 ≲
C
√

log(c/δ)√
∆min

(
∥w∥2√

n
+

1√
m

)
(1)

≲
C
√
log(c/δ)√
∆min

(
1√

mini ni
+

1√
m

)
, (2)

where wi =
α∗
i

β̃i
, β̃i the empirical proportion of class i in the Source and ni is the

number of points of class i in the Source.

The same result holds when replacing α∗ by the (unobserved) vector of
empirical proportions α̃ in the target sample, both on the left-hand side and in
the definition of w .
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soft-DFM for CLS

A ”target” distribution.

Q =
c∑

i=1

α∗
i Pi + α∗

0Q0 (CLS)

Soft-DFM

α̂soft = argmin
α∈int(∆c )

∥∥∥∥∥
c∑

i=1

αiϕ(P̂i )− ϕ(Q̂)

∥∥∥∥∥
2

F

, (P2)

where int(∆c) := {x ∈ Rc
+ :
∑

xi ≤ 1}
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Main Theorems under CLS

Theorem

If α∗
0 = 0, for any δ ∈ (0, 1), with probability greater than 1− δ:

∥α̂soft − α∗∥2 ≤
2CRc/δ√
λmin

(
∥w∥2√

n
+

1√
m

)
≤

2CRc/δ√
λmin

(
1√

mini ni
+

1√
m

)
,

Gram Matrix

λmin is the smallest eigenvalue of Ĝ and ∆min the second smallest eivenvalue of
M̂ . In particular, it holds:

∆min ≥ λmin.
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Main Theorems under CLS

Definition

Introduce V̄ := Span{ϕ(Pi ), i ∈ [c]} and let ΠV̄ be the orthogonal projection
on V̄ .

Theorem

With probability greater than 1− δ:

∥α̂soft − α∗∥2 ≲
1√
λmin

(
3ϵn + εm +

√
2α∗

0 ϵn ∥ϕ(Q0)∥+ ∥ΠV̄ (ϕ(Q0))∥F
)
,

with:

ϵn =

√
log(c/δ)

mini ni
; εm =

√
log(c/δ

m
;
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Robustness to contamination

∥α̂soft − α∗∥2 ≲
1√
λmin

(
3ϵn + εm +

√
2α∗

0 ϵn ∥ϕ(Q0)∥+ ∥ΠV̄ (ϕ(Q0))∥F
)

Observe that the bound shows the robustness of soft-DFM procedure against
contaminations Q0 that are orthogonal to V̄ := Span{ϕ(Pi ), i ∈ [c]}.

Gaussian kernel (KMM)

Two embeddings ϕ(P) and ϕ(P′) will be close to orthogonal if P and P′ are
well-separated.
We anticipate that KMM will be robust against contamination distributions Q0

whose main mass is far away from the source distributions.
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Robustness to contamination

∥α̂soft − α∗∥2 ≲
1√
λmin

(
3ϵn + εm +

√
2α∗

0 ϵn ∥ϕ(Q0)∥+ ∥ΠV̄ (ϕ(Q0))∥F
)

Observe that the bound shows the robustness of a soft-DFM procedure against
contaminations Q0 that are orthogonal to V̄ := Span{ϕ(Pi ), i ∈ [c]}.

Classifier (BBSE)

The feature space is of the same dimension as the number of sources hence the
orthogonal component will always be 0 and we expect no robustness property
for BBSE.
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Experiments

The source is a list of 5 Gaussian distributions. α∗
0 ranges from from 0 to 0.3.

We repeated the experiments with different dimensions.

Figure: Three kinds of noise : On the left Q0 is uniformly distributed over the data range, in the middle
Q0 is Gaussian with a mean distant from the other means and on the right Q0 is Gaussian with a
similar mean to the others.
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Experiments
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Figure: Robustness of the algorithms to three types of noise. Left: uniform noise; middle: noise is a
new class far from the others; right: noise is a new class in the middle of the others.
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Conclusion

We introduced a general approach for Label Shift Quantification.

We provided a general theoretical analysis of DFM, improving over
previously known bounds derived for specific instantiations only.

We analysed theoretically the behavior of DFM under departures from the
label shift hypothesis, a situation not studied in earlier works, and put into
light a robustness against certain types of perturbations, depending on the
feature mapping ϕ used.
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Thank you for your attention.



Dussap, Bastien and Blanchard, Gilles and Chérief-Abdellatif, Badr-Eddine.
”Label Shift Quantification with Robustness Guarantees via Distribution
Feature Matching”.



Kernel Mean Matching

Kernel Mean Embedding

ϕ(P) = EP[k(x , ·)]

Kernel Trick

⟨ϕ(P), ϕ(Q)⟩ = EP,P[k(x , x
′)] + EQ,Q[k(y , y

′)]− 2EP,Q[k(x , y)]

−→ Methods using Kernels are quadratic.
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Random Fourier Features
Random Fourier Features are based on Bochner’s Theorem:

Theorem

A continuous function φ on RD is positive definite if and only if φ is the Fourier
transform of a non-negative measure.

Random Fourier Features

k(x , y) = Eω∼Λk
[e iω

T (x−y)]

= Eω∼Λk
[cos

(
ωT (x − y)

)
]

Random Fourier Features

Using a sample (ωi )
D/2
i=1 i.i.d. from Λk :

ϕ(x) =

√
2

D

[
cos(ωT

i x), sin(ωT
i x)

]D/2

i=1

is such that

k(x , y) = E[ϕ(x)Tϕ(y)],
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Random Fourier Feature Matching

Random Fourier Feature Matching (RFFM)

DFM method using:

ϕ(x) =

√
2

D

[
cos(ωT

i x), sin(ωT
i x)

]D/2

i=1

Relying on RFF with D Fourier features induces a complexity of O(D(n +m))
since we only have to compute ϕ(P̂i ) and ϕ(Q̂).
Computing ϕ(P̂) reduces to a matrix multiplication, for which GPU are well
suited.

Rahimi and Recht. ”Random features for large-scale kernel machines”. In
Advances in neural information processing systems, 2007.
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Optimisation Problem

Optimisation Problem (DFM)

α̂ = argmin
α∈∆c

∥∥∥∥∥
c∑

i=1

αiϕ(P̂i )− ϕ(Q̂)

∥∥∥∥∥
2

F

(P)

where ∆c := {x ∈ Rc
+ :
∑

xi = 1}

Solving (P) amounts to solving a Quadratic Programming (QP) in dimension c.
Indeed, we can rewrite the problem as:

minimise
1

2
αT Ĝα+ qTα (QP)

subject to α ⪰ 0c and 1Tc α = 1,

with q =
(
⟨ϕ(P̂i ), ϕ(Q̂)⟩

)c
i=1

. This is a c-dimensional QP problem, which can

be solved efficiently.
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BBSE as DFM

Examples

ϕ(x) = (1{f̂ (x) = i})i=1,...,c ∈ Rc . For f̂ a hard-classifer.

ϕ(Q̂) = α̂cc

ϕ(P̂i ) = P̂(f̂ (x) = j | y = i)j = (M̂f̂ )i

BBSE

α̂− = M̂−1

f̂
α̂cc

DFM associated to ϕ

α̂+ = argmin
α∈∆c

∥α̂cc − M̂f̂ α∥2

Proposition

If α̂− ≥ 0 then:
α̂− = α̂+
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Properties of ∆min

Let (b1, · · · , bc) be a c-uple of vectors of RD assumed to be linearly
independant. We denote M the Gram matrix of those vectors, i.e.
Mij = ⟨bi , bj⟩.

Theorem

For any number of classes c , ∆min is equal to min
∥u∥=1

1Tu=0

uTMu.

→ ∆min(b1, · · · , bc) is always greater than the smallest eigenvalue of the Gram
matrix.

Theorem

In particular for two classes, ∆min(b1, b2) =
1
2∥b1 − b2∥2.
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Experiments on Cytometry dataset
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Figure: Each column represents the error — computed using the ℓ2 norm between the true proportions and the estimated proportions
— obtained when some class is absent from the source but present in the target distribution. The first column gives the results when no
class is discarded. The class are sorted according to the average proportions they represent in the samples (x labels mention class held out
from the source and its proportion)
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